

International Robotic Olympiad 2021

Ocean Exploration Competition Rules (V1)

(Secondary School Division)

Ger	neral Rules	2		
	Game Rules	2		
	Robot Rules	2		
	Other Points to Note	3		
	Hand Generator Attachment 1	4		
Indi	vidual competition rules	5		
1	Environmental Protection – Sea Surface Sweeper Robot Game	6		
2	Water Polo Robot Game	8		
3	Shipwreck Rescue and Salvage Robot Game			
4	Ocean Treasure Hunting Robot Game	11		
5	Land and Water Robot Obstacle Avoidance Competition	12		
6	Hand Generator Robot Backstroke Swimming Competition	14		
7	Hand Generator Robot Breaststroke Swimming Competition	15		
8.	Hand Generator Robot Butterfly Stroke Swimming Competition	16		
9.	Hand Generator Robot Freestyle (front crawl) Swimming Competition	17		
10.	Hand Generator Robot Medley Relay Swimming Competition	18		
11	Hand Generator Robot Fish Short Distance Swimming (Vertical style) Competition	20		
12.	Hand Generator Robot Fish Short Distance Swimming (Horizontal style) Competition	21		
13.	Hand Generator Robot Duck Short Distance Swimming Competition	22		
14	Wired Control Robot Fish Obstacle Avoidance Competition	24		
15.	Wireless Control Servo Motor Robot Fish Obstacle Avoidance Competition	26		
16.	Hand Generator Four-Oar Robot Boat Competition	28		
17.	Hand Generator Robot Canoe Competition	30		
18.	Wireless Control Servo Motor Four-Oar Robot Boat Obstacle Avoidance Competition	32		
19.	Wireless Control Servo Motor Robot Duck Obstacle Avoidance Competition	34		
20	Robot Dragon Boat Race	36		
21	Robot Dragon Boat Relay Race	37		
22	Robot Dragon Boat Appearance Design Competition	39		

General Rules

Game Rules

- 1. Single motor category robots may use only one set of motor-gear box.
- 2. Multi-motor category robots may use only two sets of motor-gear box for walking.
- 3. All contestants should wear uniform during the competition.
- 4. Name list of the student contestants cannot be altered without the Organizer's permission.
- 5. Contestants not accompanied by their instructors or teachers are not allowed to take part in the competition.
- 6. Instructors or teachers cannot enter the restricted area to instruct students to play the game.
- 7. Judges have the right to give warning or disqualify the contestants, instructors or teachers who do not obey the rules or the decision of the judges.
- 8. Only applications from half-day/whole-day formal Primary and Secondary Government schools, Aided/Direct Subsidized schools or Private schools will be accepted (non-tutoring centers or institutes). The responsible teachers must by employed by the respective schools.

Robot Rules

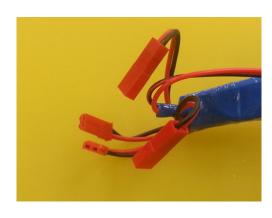
- 9. Except for the servo motor robot category, all participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants are not allowed to modify the motor or the gear box in any way. Gearbox should be exposed and cannot be sealed. Transparent materials must be used if gear box is to be sealed. Before and after the game, sealed gear box must be disassembled for checking.
- 10. Prior to the matches, all participants must submit their robots for inspection by the judges. These robots are then kept in a designated location. When the matches begin, participants may take their robots away from the designated location to the game field for competition. These robots must be returned to the same designated location after the competition. All these participating robots will then be sent to the testing center by the judges for motor performance check.
- 11. Participating robot and motor will be dissembled for further inspection if the performance of the motor is found exceeding that of the original motor. Participants will be disqualified if found not using original motor or additional devices are used for the competition and a three-year suspension penalty will be served to both the participants and their schools.
- 12. All motors must pass the power consumption check. The motor cannot consume more than 280mA when 3V supplied by the power regulator.
- 13. The weight of the robot means the total weight including all accessories and parts (including batteries).
- 14. Participating robots must comply with the dimensions, weights and specific requirements set by the Organizer.
- 15. All robots cannot add on control devices not approved by the Organizer. All wireless installations must be able to alter frequency channels. Participants must immediately change the frequency or channel of their transmitters found interfering others otherwise they would be disqualified for the competition. Participants are suggested to use wireless remote control devices that are free from interference. All approved models of electronic controller accessories, wireless installations and their suppliers would be announced on the website.
- 16. The competition aims to encourage participants to apply their science and technology knowledge to create and build their own robots. Through this process, their ability, skill set and experience of building robots will further be enhanced. As such, any commercial robotic kits available in the markets are not allowed to be used in the competition. Except for screws, nuts, washer and gear box, the mechanical parts (including perforated plastic strip or metal strip) of the robots must be made by the participating

students from raw materials themselves. No ready-made model nor toy be used as the major part of the robot. However, decorative accessories from ready-made toy components may be used but not exceeding 30% of the overall parts of the robot.

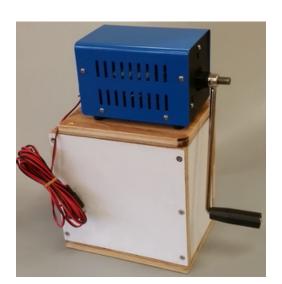
- 17. In the "Hand Generator Category Competitions", no more than two student contestants are allowed to operate the hand generator (attachment 1) and they can change at any time.
- 18. Pneumatic device cannot be used.

Other Points to Note

- 19. Except for specific competitions, participants should use the batteries (1.5V AA) provided by the Organizer in the International Competition. Participants will prepare their own batteries in the respective regional competitions.
- 20. All participants must use the hand generators (attachment 1) provided by the Organizer.
- 21. Registration number of the robot must be engraved or printed with permanent ink on its chassis.
- 22. The Organizer may check robots on their specifications any time after registration. Units found not meeting specifications would be disqualified for the competition.
- 23. The Organizer reserves the right to use all participating items for marketing and publicity purposes.
- 24. Violation of the above rules would lead to immediate disqualification of the competition and its result.
- 25. The organizer will set up a camera in the swimming events and will not accept complaints other than the film taken by the organizer.
- 26. Complaints must be submitted by the teacher within 30 minutes after the end of the competition.
- 27. The Organizer reserves the right to modify the game rules. Please visit our website regularly for updated games rules.



Attachment 1


Hand Generator

Type 1 Generator: Hand Held Hand Generator

Switch the plugs to change the polarity and turning direction of the handle

Type 2 Generator: Desktop Hand Generator

2.1mm plug and socket

Different types of 2.1mm socket

Each Single Motor Robot should be equipped with a 2.1mm socket for the plug of hand generator.

Individual competition rules

- Environmental Protection Sea Surface Sweeper Robot Game
- 2. Water Polo Robot Game
- 3. Shipwreck Rescue and Salvage Robot Game
- 4. Ocean Treasure Hunting Robot Game
- 5. Land and Water Robot Obstacle Avoidance Competition
- 6. Hand Generator Robot Backstroke Swimming Competition
- 7. Hand Generator Robot Breaststroke Swimming Competition
- 8. Hand Generator Robot Butterfly Stroke Swimming Competition
- 9. Hand Generator Robot Freestyle (front crawl) Swimming Competition
- 10. Hand Generator Robot Medley Relay Swimming Competition
- 11. Hand Generator Robot Fish Short Distance Swimming (Vertical style) Competition
- 12. Hand Generator Robot Fish Short Distance Swimming (Horizontal style) Competition
- 13. Hand Generator Robot Duck Short Distance Swimming Competition
- 14. Wired Control Robot Fish Obstacle Avoidance Competition
- 15. Wireless Control Servo Motor Robot Fish Obstacle Avoidance Competition
- 16. Hand Generator Robot Four-Oar Rowing Boat Competition
- 17. Hand Generator Robot Canoe Competition
- 18. Wireless Control Servo Motor Robot Four-Oar Rowing Boat Obstacle Avoidance Competition
- 19. Wireless Control Servo Motor Robot Duck Obstacle Avoidance Competition
- 20. Robot Dragon Boat Race
- 21. Robot Dragon Boat Relay Race
- 22. Robot Dragon Boat Appearance Design Competition



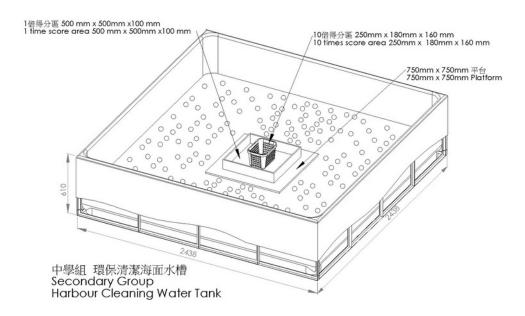
1. Environmental Protection – Sea Surface Sweeper Robot Game

Floating rubbish on the sea poses health hazard as well as danger to marine traffic. This competition aims to arouse attention of students to environmental protection and to develop their design creativity. Each school may have a maximum of two teams and each team may submit one robot for the competition.

Robot Specification

1. The size of the robot, with its arms fully stretched forward, cannot exceed 300mm (Length) x 200mm (Width) x 200mm (Height). The height of the robot will not take into consideration if the catcher is stretched upward or downward.

- 2. The actuators and catcher of the robot must be controlled by wired manual controller.
- 3. No restriction on the quantity of actuators (motor, gear box, servo mechanism and propeller) on the robot. All participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants should not modify the motor or the gear box in any way.
- 4. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and catcher and NO additional energy installment can be made. Batteries must comply with the specification set by the Organizer.
- 5. Only FA-130 or RE-260 motors can be used to drive the propeller.



Playing Field Specification

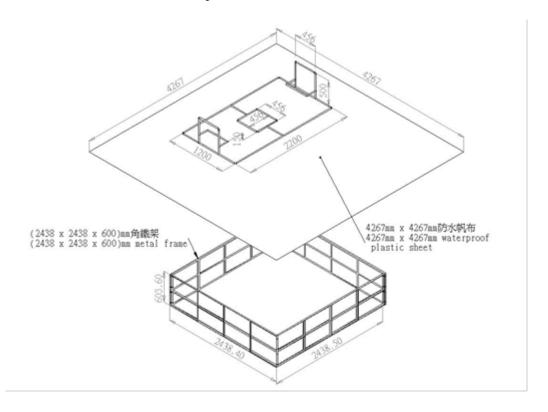
- 1. Water tank dimension: 2438mm (Length) x 2438mm (Width) x 610mm (Height), uneven wrinkles may appear on the bottom of the tank.
- 2. Water is filled to about 150mm deep
- 3. A square floating platform with sides of 750mm is placed in the center of the water tank. On the platform is a square bin with sides 500mm, height 100mm which is a 1-time score zone. Inside the 1-time score zone is another bin of 250mm long, 180mm wide and 160mm tall which is a 10-time score zone.

- 1. Ping-pong are used as rubbish. There are about 200 each of orange balls (1 point) and white balls (-5 points) in the water tank.
- 2. Each team plays once. The game time is 2 minutes. Only one team plays in the game at a time and only one member controls the robot.
- 3. The robot is to pick up and shoot the balls into either the 1-time score zone or the 10-time score zone using its own designed catcher. The robot is not allowed to cross the boundaries of the floating platform to shoot the balls.
- 4. At the end of the game, the balls inside the bins (score zones) are scored according to their colors and locations. The robot sweeper that has the most points wins the competition.

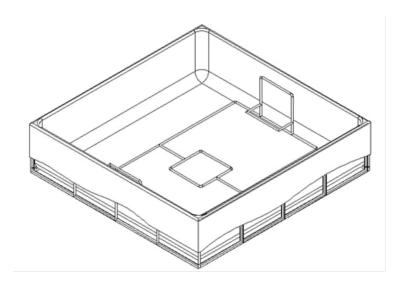
2. Water Polo Robot Game

The water Polo robot game is a team competition. Each team has two robots. The participating robots should have good ability to pick up and throw balls with skillful control.

Robot Specification


- 1. The size of the robot, with its arms fully stretched forward, cannot exceed 300mm (Length) x 200mm (Width) x 200mm (Height). The height of the robot will not take into consideration if the catcher is stretched upward or downward.
- 2. The robot is controlled by wired manual controller.
- 3. No restriction on the quantity of actuators (motor, gear box, servo mechanism and propeller) on the robot. All participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants should not modify the motor or the gear box in any way.
- 4. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and catcher and NO additional energy devices can be installed. Batteries must comply with the specification set by the Organizer.
- 5. Only FA-130 or RE-260 motors can be used to drive the propeller.

RE-260 ==

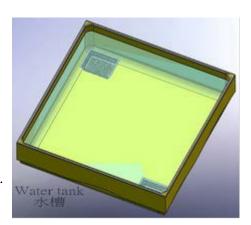

Playing Field Specification

- 1. Water pool dimension: 2438mm (Length) x 2438mm (Width) x 610mm (Height), uneven wrinkles may appear on the bottom of the pool.
- 2. Penalty area: 456mm (Length) x 200mm (Width)
- 3. Water is filled to about 150mm deep

- 1. Each robot is controlled by one participant only.
- 2. 'Toss a coin' is used to decide on the goal and the first possession of the game. Each time when a robot starts the game at the center of the pool, the other three robots are to get prepared on the sides of their own goal area. A throw into the opponent's goal directly from the first possession of the ball is not counted.
- 3. A Ping Pong is used as the water polo ball. A goal scores 1 point if the ball completely passes into the opponent's goal. After a goal is scored, the opposite team restarts the game from the center of the pool.
- 4. There are two halves in the match and each is of 3 minutes duration. The game is conducted on a knockout basis.
- 5. The team that scores the most points at the end of the match wins. If it tied, the team that first scores a goal within the extra 3 minutes game time via 'sudden death' wins. If it still tied, each team sends 2 robots to take turn for the Penalty Throw one at a time and the time of each goal is recorded. The team with the most goals wins. In case of draw, the team with the shortest amount of goal scoring time wins. Second round will be conducted until a winner is identified.
- 6. **Penalty Throw**: A ball is placed at the 'mid-court' of the pool. Each robot is given one minute, with no limit on the number of attempts, to shoot the ball into the open goal (i.e. without a defending robot) until a goal is scored and its time recorded. Robot cannot enter the goal area to get or shoot the ball.
- 7. The robot must throw the ball (the ball enters inside the robot) within 5 seconds once the ball is in its possession; otherwise it is a foul and the opposite team is awarded a free throw at where it is.
- 8. Robot cannot enter the opponent's goal area to shoot. If the ball falls inside the goal area or outside the field area, a robot from the defense team takes a 'goal throw' on the side of the goal area.
- 9. A goal is counted if the robot shoots the ball with its throwing device directly into the goal. It is not a goal if the ball is bumped in by the robot's body or if the ball is drifted into the goal by itself (it is a goal if the ball hits a defending robot and bounces into the goal).
- 10. There are no foul balls. A scrambling for the ball at the center of the pool will be taken if two teams scramble for the ball on the side of the pool causing the match ceases for over ten seconds. A robot from each team is to move from the top of its own goal area to the center of the field to scramble for the ball. All other team members have to wait on the side of the goal area and may only move until a scrambling robot touches the ball.
- 11. A penalty shot is awarded to the opposite team if the robot causes the opponent to fall not during the course of dribbling or trying to gain possession of the ball. Timer will pause at the collision incident until the fallen robot is properly positioned.

3. Shipwreck Rescue and Salvage Robot Game

The shipwreck rescue and the salvage robot is a team competition, each team composes of two robots. The participating robot is able to move forwards and backwards, turn left and right, float and sink, and has a mechanism capable of salvaging a sunken ship. The team uses the shortest amount of time to salvage the sunken ship at the bottom to the collector wins.


Robot Specification

- 1. The robot, when fully stretched, cannot exceed 300mm (Length) x 200mm (Width) x 200mm (Height).
- 2. The robot is controlled by wired manual controller. The entire robot may only operate and move under water with no part above water surface.
- 3. No restriction on the quantity of actuators (motor, gear box, servo mechanism and propeller) on the robot. All participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants should not modify the motor or the gear box in any way.
- 4. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and catcher and NO additional energy devices can be installed. Batteries must comply with the specification set by the Organizer.
- 5. Only FA-130 or RE-260 motors can be used to drive the propeller.

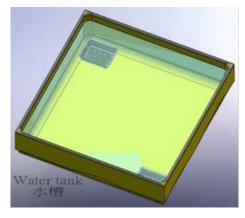
Playing Field Specification

- 1. The playing field is a water tank of 2438mm (Length) x 2438mm (Width) x 610mm (Height), filled with water to 450mm deep, uneven wrinkles may appear on the bottom of the tank.
- 2. A collector of 490mm (Length) x 390mm (Width) x 120mm (Height) is placed at the opposite corner on each side of the bottom of the tank (as shown in figure) for placing the salvaged vessel.
- 3. A 1:550 Titanic model is used as the sunken ship in the competition. Half of the sunken ship weighs approximately 85 grams and is approximately 255mm long. The height is approximately 60 mm
 - from the bottom to the deck and approximately 105mm from the bottom to the chimney respectively. The width of the sunken ship is approximately 52 mm.

- 1. Each team plays once. Each robot is controlled by one participant only.
- 2. Each team has two salvage robots. The titanic ship, broken into two halves, rests on the bottom of water tank. The two robots start initially from the collector position to salvage the broken ship bodies and place them in anyone of the collectors within a time limit of five minutes (the entire boat must be placed within the outer edges of the collector).
- 3. The time to transport each broken ship body to the collector is recorded. The team that uses the shortest amount of time to salvage the entire ship wins. Should none of the teams complete the mission in five minutes; the team that salvaged half of the ship with the shortest amount of time wins.

4. Ocean Treasure Hunting Robot Game

The sea although is immeasurably deep, it would not stop men's curiosity from exploring it. Besides, the very rich resources, there are treasures from numerous sunken vessels lying in the seabed. The participant is to design two robots capable of diving under water, and transport the treasure from the seabed to the collector. The one who salvages the most is the winner.


Robot Specification

- 1. The robot, when with its arms fully stretched, cannot exceed 300mm (Length) x 200mm (Width) x 200mm (Height).
- 2. The robot is controlled by wired manual controller. The entire robot may only operate and move under water with no part above water surface.
- 3. No restriction on the quantity of actuators (motor, gear box, servo mechanism and propeller) on the robot. All participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants should not modify the motor or the gear box in any way.
- 4. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and catcher and NO additional energy devices can be installed. Batteries must comply with the specification set by the Organizer.
- 5. Only FA-130 or RE-260 motors can be used to drive the propeller.

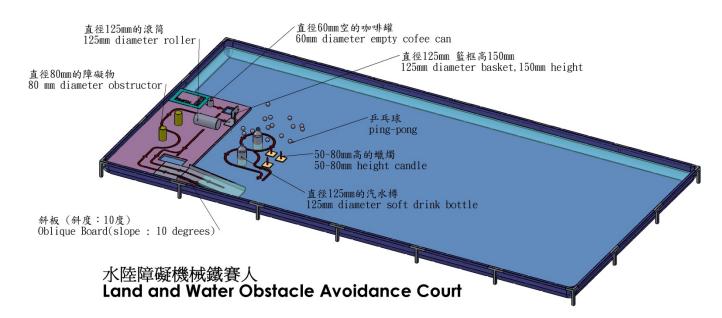
Playing Field Specification

- 1. The playing field is a water tank of 2438mm (Length) x 2438mm (Width) x 610mm (Height), filled with water to 450mm deep, uneven wrinkles may appear on the bottom of the tank
- 2. A collector of 490mm (Length) x 390mm (Width) x 120mm (Height) is placed at the opposite corner on each side of the bottom of the tank (as shown in figure) for placing the salvaged treasure.
- 3. Colored plastic stones are used as treasure.

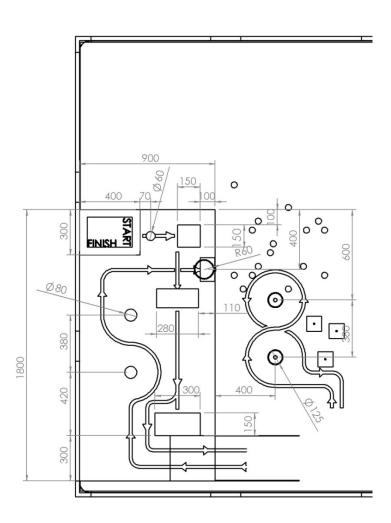
- 1. Each team plays once. Each robot is controlled by one participant.
- 2. Two robots are placed inside the collectors and start the treasure hunting to pick as many stones as possible in 5 minutes. The robot that scores the most wins.
- 3. Only stones inside the two collectors and those stones entirely placed inside the collector of the robot will be counted provided that the robot must return to the platform before the time is up to count the stones it has carried.

Land and Water Robot Obstacle Avoidance Competition

Oblique platform, drawbridge, water tank and cylindrical obstacle are placed in the obstacle avoidance game field. The participating robot is required to navigate through the oblique platform, drawbridge, water tank and cylindrical obstacle to reach the destination in the shortest time to win. This game tests the ultimate performance of the robots as well as the navigation control ability of the players.


Robot Specification

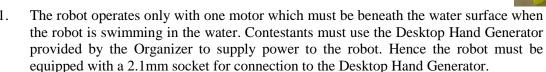
- 1. The robot cannot exceed 400mm long, 300mm wide, 300mm tall, nor 1kg (excluding wired controller) in weight.
- 2. The robot is controlled by wired manual controller. Player may move around with the robot.
- 3. The robot can use only two gear boxes for walking motion, two gear boxes for mechanic movement and two motorized propellers to move in the water.
- 4. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and catcher and NO additional energy devices can be installed. Batteries must comply with the specification set by the Organizer.
- 5. Only FA-130 or RE-260 motors can be used to drive the propeller.

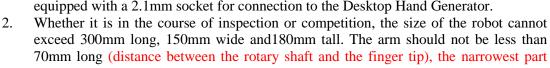

Game Filed Specification

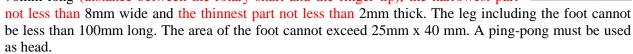
- 1. This game uses the land and water robot obstacle avoidance playing field (diagram referred).
- 2. The area of land playing field is $1800 \text{mm} \times 900 \text{mm}$ and no fencing on four sides. It is placed in a water playing field with $6 \text{m} \log x \ 3 \text{m}$ wide $x \ 300 \text{mm}$ tall. The oblique platform is slippery proof.
- 3. The diameter of the can (an empty coffee can) is 60mm, the height is 90mm and the weight is 50g. The diameter of the cylindrical obstacle is 80mm, the height is 150 mm. The diameter of roller (1.25 Liter soft drink bottle) is 125mm, the height is 280 mm.
- 4. The length of the oblique platform is 720mm, the width is 300mm and the slope is 10o.
- 5. The fire is three 50-80mm long 8mm in diameter candles. It is placed on a candlestick floating in the water tank.

Game rule

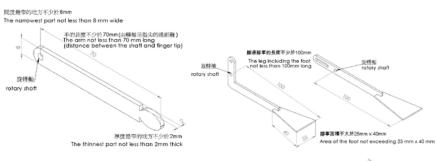
- 1. The robot is placed at the "START" position and the timer begins to count when the judge signals start of the game.
- 2. The robot has to follow the designated route. First, the robot pushes an empty coffee can to a square hole 150mm in size. If the robot or the can falls in the water, it has to restart again from the START.
- 3. The robot then pushes away a roller to a rectangular hole. If the robot or the roller falls in the water, it has to restart from the roller original position. The robot gets down into the water through the oblique bridge. After putting out three candle fire (no limit in the method), the robot has to pick up a ping pong before moving back to the land field through the oblique bridge. After bypassing the 2 cylindrical obstacles, the robot will then throw the ping-pong into the basket and the game ends and the time is recorded. If the ping-pong is dropped off, the robot may pick it up or return to the water and get another ping-pong.
- 4. The game time is of 5 minutes. Robots that fail to complete the game would be recorded 5 minutes game time.
- 5. Players cannot touch their robots or steer them by pulling the control wire during the competition until the game ends. 10 seconds is added for each offence.
- 6. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game wins.






6. Hand Generator Robot Backstroke Swimming Competition

Students are required to make a single motor robot that simulates the backstroke swimming action by applying mechanical principles.

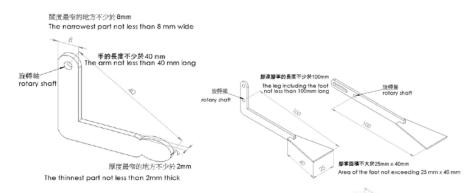

Robot Specification

- 3. Only one piece of floating object not exceeding 80mm long, 30mm wide and 30mm tall may be installed on to the robot. These dimensions are not inter-changeable. The robot has a body and four limbs only. Any additional supporting devices, wheels or floating objects are not allowed.
- 4. The robot must complete the game in backstroke swimming action with both arms and legs. No propeller can be used.
- 5. The Backstroke Swimming Robot is different from a Freestyle Swimming Robot particularly in the directions of their faces.

Game Field Specification

- 1. A swimming competition board is used (see diagram)
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep.
- 3. The start zone is 300mm long.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist.
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot once it leaves the start zone. The competition is considered as incomplete if the robot stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot reaches the acrylic board at the end of the runway.



7. Hand Generator Robot Breaststroke Swimming Competition

Students are required to make a single motor robot that simulates the breaststroke swimming action by applying mechanical principles.

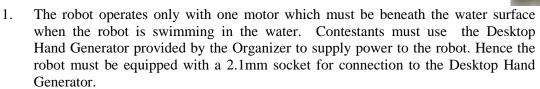
Robot Specification

- 1. The robot operates only with one motor which must be beneath the water surface when the robot is swimming in the water. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Hence the robot must be equipped with a 2.1mm socket for connection to the Desktop Hand Generator.
- 2. Whether it is in the course of inspection or competition, the size of the robot cannot exceed 300mm long, 150mm wide and 180mm tall. The arm cannot be less than 40mm long (distance between the shaft and the finger tip), the narrowest part not less than 8mm wide and the thinnest part not less than 2mm thick. The leg including the foot cannot be less than 100mm long. The area of the foot cannot exceed 25mm x 40 mm. A ping-pong must be used as head.
- 3. Only one piece of floating object not exceeding 80mm long, 30mm wide and 30mm tall may be installed on to the robot. These dimensions are not inter-changeable. The robot has a body and four limbs only. Any additional supporting devices, wheels or floating objects are not allowed.
- 4. The robot must complete the game in breaststroke swimming action with both arms and legs. No propeller can be used.

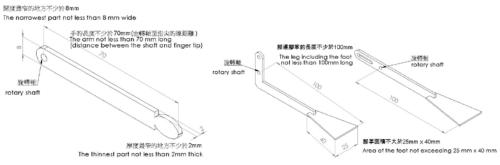
Game Field Specification

- 1. A swimming competition board is used (see diagram)
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep.
- 3. The start zone is 300mm long.

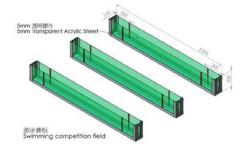
- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist.
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot once it leaves the start zone. The competition is considered as incomplete if the robot stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot reaches the acrylic board at the end of the runway.



8. Hand Generator Robot Butterfly Stroke Swimming Competition


Students are required to make a single motor robot that simulates the butterfly stroke swimming action by applying mechanical principles.

Robot Specification

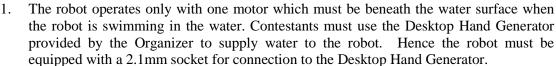


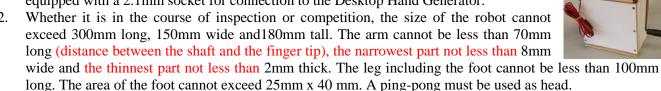
- 2. Whether it is in the course of inspection or competition, the size of the robot cannot exceed 300mm long, 150mm wide and 180mm tall. The arm cannot be less than 70mm long (distance between the shaft and the finger tip), the narrowest part not less than 2mm wide and the thinnest part not less than 2mm thick. The log including the
 - than 8mm wide and the thinnest part not less than 2mm thick. The leg including the foot cannot be less than 100mm long. The area of the foot cannot exceed 25mm x 40 mm. A ping-pong must be used as head.
- 3. Only one piece of floating object not exceeding 80mm long, 30mm wide and 30mm tall may be installed on to the robot. These dimensions are not inter-changeable. The robot has a body and four limbs only. Any additional supporting devices, wheels or floating objects are not allowed.
- 4. The robot must complete the game in butterfly stroke swimming action with both arms and legs. No propeller can be used.

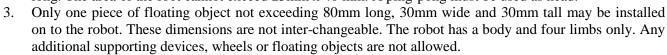
Game Field Specification

- 1. A swimming competition board is used (see diagram).
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep.
- 3. The start zone is 300mm long.

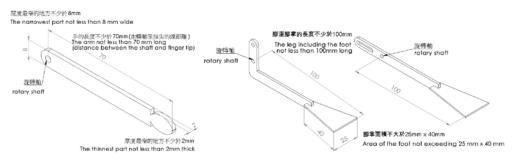
- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist.
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot once it leaves the start zone. The competition is considered as incomplete if the robot stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot reaches the acrylic board at the end of the runway.

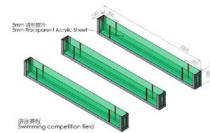





9. Hand Generator Robot Freestyle (front crawl) Swimming Competition

Students are required to make a single motor robot that simulates the front craw swimming action by applying mechanical principles.


Robot Specification

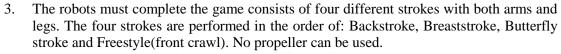


- 4. The robot must complete the game in freestyle swimming action with both arms and legs. No propeller can be used.
- 5. Freestyle is performed face down and both arms move synchronously with a small synchronized kick.

Game Field Specification

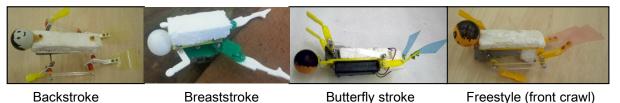
- 1. A swimming competition board is used (see diagram).
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep.
- 3. The start zone is 300mm long.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist.
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot once it leaves the start zone. The competition is considered as incomplete if the robot stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot reaches the acrylic board at the end of the runway.

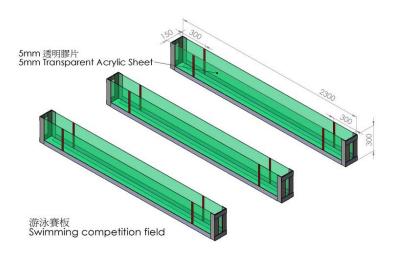


10. Hand Generator Robot Medley Relay Swimming Competition

Medley Relay is a combination of four different swimming styles by four robot swimmers in one race. It not only tests the mechanical design of robots but also the ability to cooperate among the players


Robot Specification

- 1. Each robot operates only with one motor which must be beneath the water surface when the robot is swimming in the water. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Hence the robot must be equipped with a 2.1mm socket for connection to the Desktop Hand Generator.
- 2. Dimensions and specific requirements of respective robots for this game refer to the games rules on Backstroke Swimming, Breaststroke Swimming, Butterfly Stroke Swimming and Freestyle (front crawl) Swimming respectively.



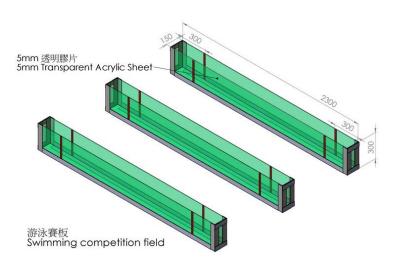
4. The Backstroke Swimming Robot is different from a Freestyle Swimming Robot particularly in the directions of their faces.

Game Field Specification

- 1. A swimming competition board is used (see diagram)
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep
- 3. The start zone is 300mm long.

- Each team plays once. Each team composed of four different swimming styles robot swimmers. The game is performed in the order of: Backstroke, Breaststroke, Butterfly Stroke and Freestyle.
- 2. Each team has two team members at the start and finish zones respectively. A Desktop Hand Generator will be provided to each team at the start zone and destination. The wire of Desktop Hand Generator is long enough so the contestants must remain at their original position. Moving along the field with the robot is prohibited. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist. Contestants may assign one student to help lower the wire in the water at the start and finish zones respectively. Pulling the wire of Desktop Hand Generator is prohibited.
- 3. Upon the Referee's signal to start the game, contestants may start to operate the Desktop Hand Generator to supply power to the robots. When the Backstroke Swimming Robot reaches the acrylic board at the end of the runway to finish the first stroke, the Breaststroke Swimming Robot at the destination starts swimming until it reaches the acrylic board at the end of the runway to end the second stroke. At the same time the wire of the Desktop Hand Generator plugged on the Backstroke Swimming Robot is unplugged and pulled back for preparing the Butterfly Stroke Swimming Robot at the start zone. When the Breaststroke Swimming Robot finishes its part, the game is continued by Butterfly Stroke Swimming Robot. The wire of the Desktop Hand Generator plugged on the Breaststroke Swimming Robot is unplugged and pulled back for preparing the Freestyle Swimming Robot. When all four robots have completed the game, the total amount of game time is counted. The team with the shortest amount of time to finish the game wins.
- 4. If contestants pull the wire, whether intentionally or not, in order to move the robot forwards, the team will be warned and 10 seconds is added to the total game time. The team will be disqualified upon second offence.

11. Hand Generator Robot Fish Short Distance Swimming (Vertical style) Competition


There are a wide variety of marine organisms with numerous kinds of fishes in the ocean. Their swimming style may be different from one another. Students are required to make a single motor robot fish that simulates the fish swimming action (vertical style) by applying mechanical principles.

Robot Fish Specification

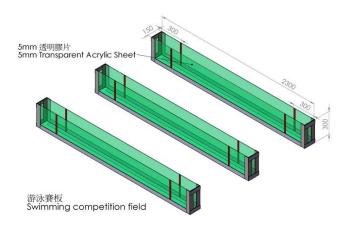
- 1. The robot fish operates only with one motor. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Hence the robot must be equipped with a 2.1mm socket for connection to the Desktop Hand Generator.
- 2. Whether it is in the course of inspection or competition the size of the robot fish cannot exceed 300mm long, 50mm wide and 100mm tall.
- 3. The robot fish must complete the game in fish swimming action (vertical style). No propeller can be used
- 4. The robot fish has a body only and no additional supporting devices nor wheels be installed on the left, right or bottom part of the robot fish.

Game Field Specification

- 1. A swimming competition board is used (see diagram)
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep
- 3. The start zone is 300mm long.

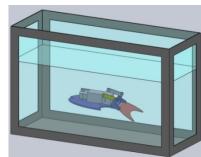
- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot fish. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot fish is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot fish once it leaves the start zone. The competition is considered as incomplete if the robot fish stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot fish reaches the acrylic board at the end of the runway.

12. Hand Generator Robot Fish Short Distance Swimming (Horizontal style) Competition


There are a wide variety of marine organisms with numerous kinds of fishes in the ocean. Their swimming style may be different from one another. Students are required to make a single motor robot fish that simulates the fish swimming action (Horizontal style) by applying mechanical principles.

Robot Fish Specification

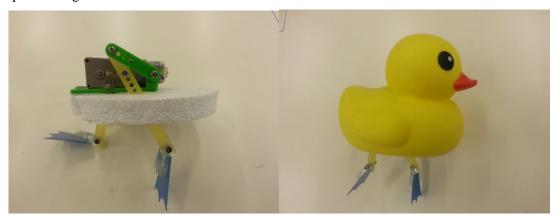
- 1. The robot fish operates only with one motor. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot. Hence the robot must be equipped with a 2.1mm socket for connection to the Desktop Hand Generator.
- 2. Whether it is in the course of inspection or competition, the size of the robot fish cannot exceed 300mm long, 100mm wide and 50mm tall.
- 3. The robot fish must complete the game in fish swimming action (horizontal style). Except for the floating object, the robot fish must be below the water surface throughout the course of competition. No propeller can be used.
- 4. The robot fish has a body only and no additional supporting devices, wheels be installed on the left, right or bottom part of the robot fish.

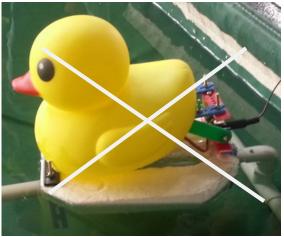

Game Field Specification

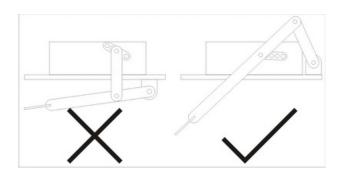
- 1. A swimming competition board is used (see diagram)
- 2. Dimension of the transparent swimming track: 2300mm (Length) x 150mm (Width) x 300mm (Height) filled with water to 150mm deep
- 3. The start zone is 300mm long.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Desktop Hand Generator provided by the Organizer to supply power to the robot fish. Only the contestant himself/herself operates the Desktop Hand Generator and nobody is permitted to assist
- 3. The wire of the Desktop Hand Generator is long enough so that the contestants must stay behind at the start zone. Moving along the field with the robot fish is prohibited. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Desktop Hand Generator is prohibited.
- 4. Contestants cannot touch the robot fish once it leaves the start zone. The competition is considered as incomplete if the robot fish stops moving or fails to reach the destination within the 30 seconds game time. The game ends when the robot fish reaches the acrylic board at the end of the runway.

13. Hand Generator Robot Duck Short Distance Swimming Competition

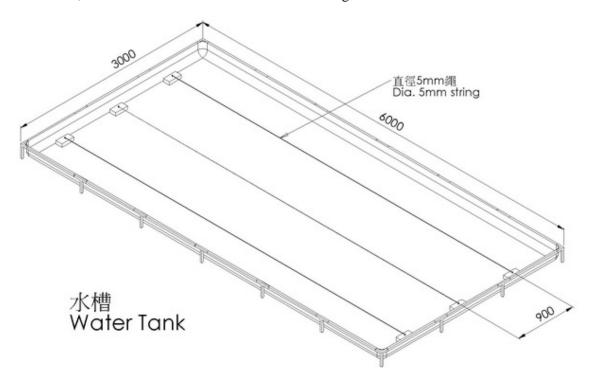

Ducks swim with two webbed feet in the water. Students apply simple mechanical principle to make a robot duck that simulates the ducks swimming action.


Robot Specification


- 1. The robot duck operates only with one motor. Contestants must use the Hand Held Hand Generator provided by the Organizer to supply power to the robot duck. Hence the robot duck must be equipped with a 2.1 mm socket for connection to the Hand Held Hand Generator.
- 2. The robot duck must have a yellow plastic case as shown in the diagram and the total dimension of the robot duct cannot exceed 200 mm long, 200 mm wide and 200mm tall. No additional floating object is allowed on the plastic case. All floating objects must be completely concealed inside the yellow plastic case.

- 3. The robot duck is to paddle with two mechanical webbed feet as shown in the diagram. No propeller can be used.
- 4. A device should be installed at the bottom of the robot duck for a 5mm diameter guiding nylon rope to pass through.

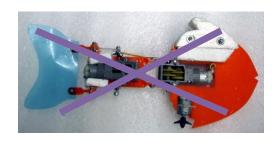
Floating material should be installed inside the body. Non duck-leg mechanical design cannot be used



Game Field Specification

- 1. The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. A 5mm diameter nylon rope is installed across the water tank approximately 20mm, with ±10mm deviation, beneath water surface to form a fixed rowing track.

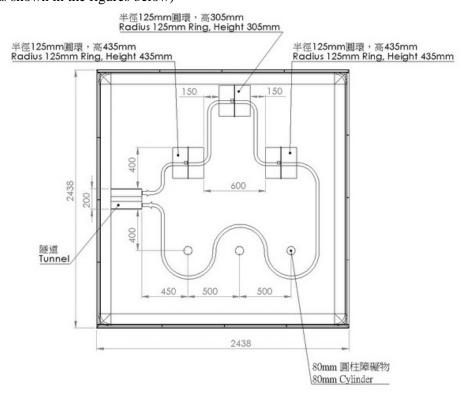
- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Hand Held Generator provided by the Organizer to supply power to the robot duck. Only the contestant himself/herself operates the Hand Held Generator and nobody is permitted to assist.
- 3. Contestants are not required to stay at the start zone and can move along behind the robot duck. The wire is long enough to connect to the Hand Held Generator. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Hand Held Generator is prohibited.
- 4. The robot duck is to be placed with its poop against the end of the start zone before the game starts. The game is considered completed once the front part of the robot duck touches the rim of the destination and the time is recorded.
- 5. Contestants cannot touch the robot duck once it leaves the start zone. The competition is considered as incomplete if the robot duck stops moving or fails to reach the destination within the 60 seconds game time.



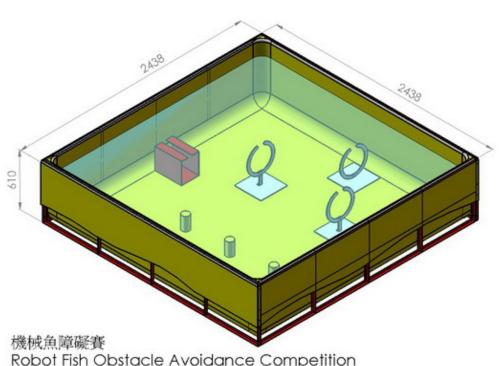
14. Wired Control Robot Fish Obstacle Avoidance Competition

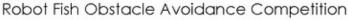
There are a wide variety of marine organisms with numerous kinds of fishes in the ocean. Their swimming style may be different from one another. Students are required to make a robot fish that simulates the fish swimming action by applying mechanical principles. The robot fish is required to navigate among obstacles. This game tests the ultimate performance of the robots as well as the navigation control ability of the players.

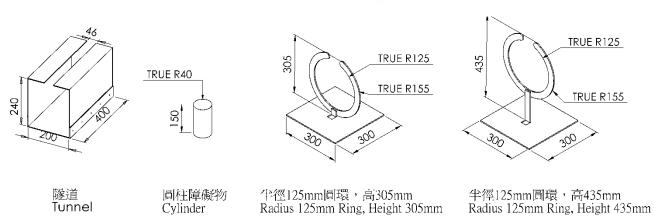
Robot Fish Specification


- 1. The robot fish when fully stretched cannot exceed 300mm (Length) x 200mm (Width) x 240mm (Height).
- 2. No restriction on the quantity of actuators (motor, gear box, servo mechanism, propeller) on the robot. All participating robots must use Tamiya70093 gear box (203.7:1, 58.2:1, 16.6:1) and its matching motor for competition. The gear ratio may only be adjusted in accordance to the manufacturer's instructions. Contestants should not modify the motor or the gear box in any way.

- 3. The robot fish must use one fish tail to complete the game in fish swimming action. No propeller is allowed to be used for floating nor sinking function. Instead a device can be installed for the purpose of controlling the center of gravity of the robot fish by moving a heavy weight back and forth causing the robot fish to tilt upward or downward. As a result driving the robot fish to swim upward or downward.
- 4. The robot fish is controlled by wired manual controller. No more than 8 pieces of 1.5V AA alkaline batteries can be used to drive the actuators and NO additional energy installment can be made.

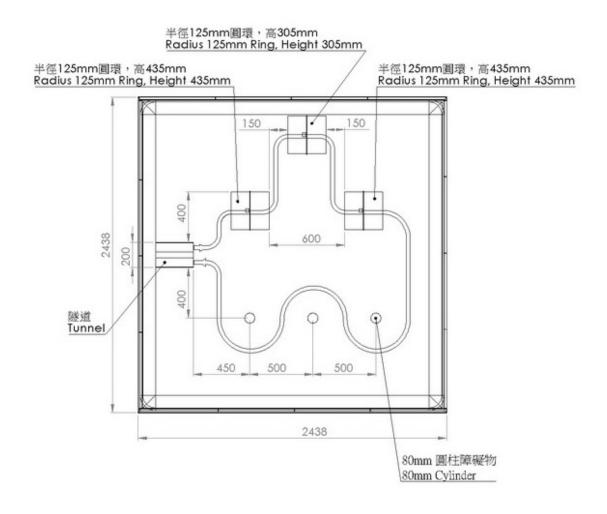

Game Field Specification


The playing field is a water tank of 2438mm (Length) x 2438mm (Width) x 610mm (Height), filled with water to 450mm deep (as shown in the figures below)



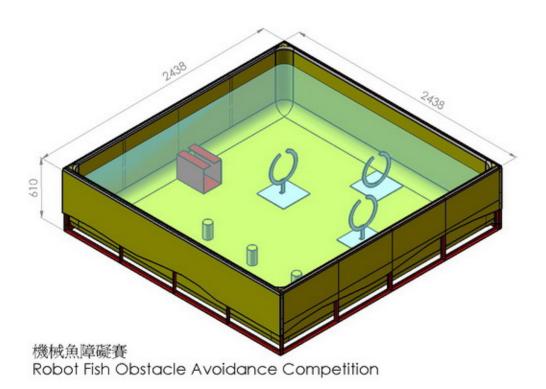
- Contestants use 8 pieces 1.5V AA alkaline batteries to supply power to the robot fish. Pulling the wire of controller is prohibited.
- 2. The robot fish is placed inside the tunnel and may be operated upon receiving the referee's signal to start the game.
- 3. The robot fish must finish the game by following the designated path. It first swims out of the tunnel, bypasses the 3 rings of different height. It then make turns bypassing 3 cylinders. The game ends once the whole body of robot fish enters completely into the tunnel.
- The game time is 3 minutes. If the robot fish cannot complete the game, a 3 minutes game time is 4. recorded as well its completed distance.
- 5. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.

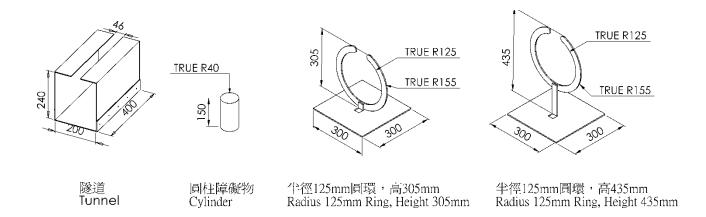
15. Wireless Control Servo Motor Robot Fish Obstacle Avoidance Competition


There are a wide variety of marine organisms with numerous kinds of fishes in the ocean. Their swimming style may be different from one another. Students are required to make a robot fish that simulates the fish swimming action by applying mechanical principles. The robot fish is required to navigate through obstacles. This game tests the ultimate performance of the robots as well as the navigation ability of the players.

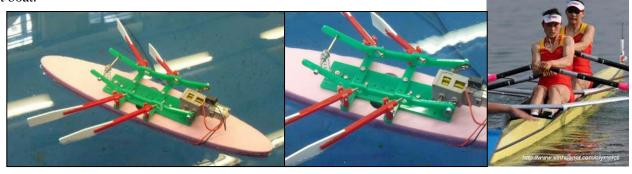
Robot Fish Specification

- 1. The robot fish when fully stretched cannot exceed 400mm (Length) x 200mm (Width) x 240mm (Height).
- 2. The robot fish operates only with servo motors. No restriction on the quantity of servo motor.
- 3. The robot fish must use one fish tail to complete the game in fish swimming action. No propeller is allowed to use for floating and sinking function. Instead a device is installed for the purpose of controlling the center of gravity of the robot fish by moving a heavy weight back and forth causing the robot fish to tilt upward or downward. As a result driving the robot fish to swim upward or downward.
- 4. The robot fish is controlled by wireless controller. Contestants are to prepare their own batteries.


Game Field Specification


The playing field is a water tank of 2438mm (Length) x 2438mm (Width) x 610mm (Height), filled with water to 450mm deep (as shown in the figures below).

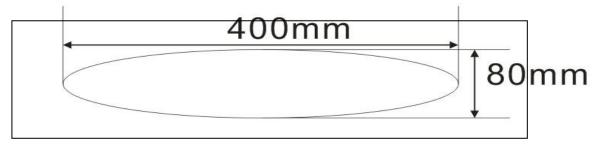
- 1. The robot fish is placed inside the tunnel and may be operated upon receiving the referee's signal to start the game.
- 2. The robot fish must finish the game by following the designated path. It first swims out of the tunnel, bypasses the 3 rings of different height. It then make turns bypassing 3 cylinders. The game ends once the whole body of the robot fish enters completely into the tunnel.
- 3. The game time is 3 minutes. If the robot fish fails to complete the game, a 3 minutes game time is recorded as well its completed distance.
- 4. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.



16. Hand Generator Four-Oar Robot Boat Competition

Rowing competition is one of the Olympic sports as well as an annual event held by Cambridge University and

Oxford University. Participants are required to design and make a four-oar rowing robot boat.



Robot Boat Specification

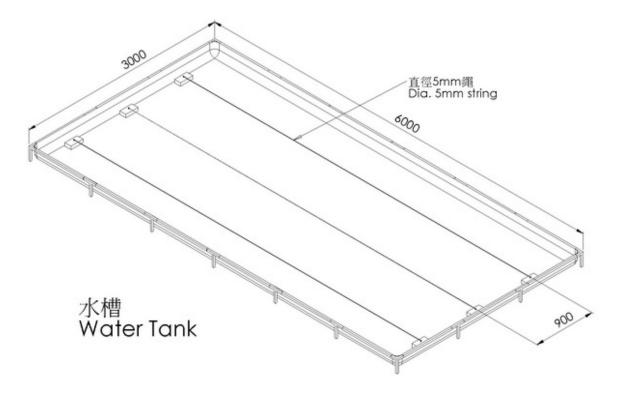
The robot boat operates only with one motor. Contestants must use the Hand Held Hand Generator provided by the Organizer to supply power to the robot boat. Hence the robot boat must be equipped with a 2.1 mm socket for connection to the Hand Held Hand Generator.
 The total size of the robot boat (including the robot, 4 oars and the boat) cannot be

The total size of the robot boat (including the robot, 4 oars and the boat) cannot be exceed 400 mm long, 400 mm wide, and 240mm tall. The entire robot boat (excluding four oars and supporting device) must be able to pass through a 400 mm long, 80 mm wide oval shape template (as shown below). Catamaran is not allowed.

Oval shape template

- 3. The robot boat paddles with all 4 four oars moving simultaneously. No propeller can be used.
- 4. A device should be installed at the bottom of the boat for a 5mm diameter guiding nylon rope to pass through.

Guiding nylon rope 1


Guiding nylon rope 2

Game Field Specification

- The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. A 5mm diameter nylon rope is installed across the water tank approximately 20mm with ± 10 mm deviation, beneath water surface to form a fixed rowing track.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Hand Held Generator provided by the Organizer to supply power to the robot boat. Only the contestant himself/herself operates the Hand Held Generator and nobody is permitted to assist.
- 3. Contestants are not required to stay at the start zone and can move along behind the robot boat. The wire is long enough to connect to the Hand Held Generator. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Hand Held Generator is prohibited.
- 4. The poop of the robot boat is placed against the end of the start zone before the game starts. The game is considered completed once the bow of the robot boat touches the rim of the destination and the time is recorded.
- 5. Contestant cannot touch the robot boat once it leaves the start zone. The competition is considered as incomplete if the robot duck stops moving or fails to reach the destination within the 60 seconds game time.

17. Hand Generator Robot Canoe Competition

In the ancient time, men already knew to hollow a tree trunk to make a canoe to commune on the water.

Participants are required to design and make a Single-Oar robot canoe.

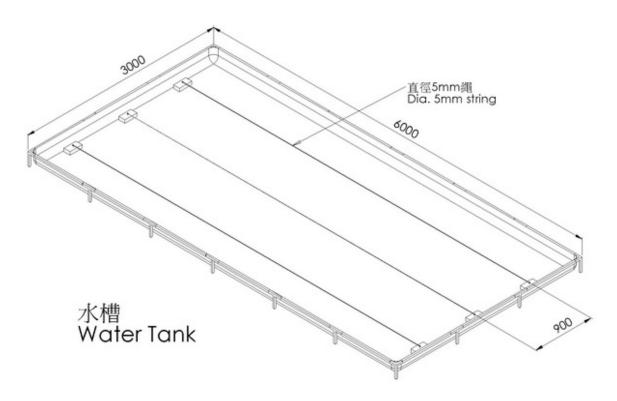
Robot Canoe Specification

The robot canoe operates with only one motor. Contestants must use the Hand Held Hand Generator provided by the Organizer to supply power to the robot canoe. Hence the robot canoe must be equipped with a 2.1 mm socket for connection to the Hand Held Hand Generator.

The total size of the robot canoe (including the robot, the oar and the canoe) cannot exceed 400 mm long, 400 mm wide, 240mm tall. The entire robot canoe (excluding the oar and supporting device) must be able to pass through a 400 mm long, 80 mm wide oval shape template (as shown below). Catamaran is not allowed.

Oval shape template

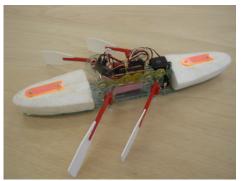
- 3. Robot canoe advances in a canoe moving pattern. No propeller can be used. No device can be used to hold the oar except hands.
- A device should be installed at the bottom of the canoe for a 5mm diameter guiding nylon rope to pass through.


Guiding nylon rope device

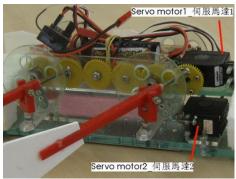
Game Field Specification

- The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. A 5mm diameter nylon rope is installed across the water tank approximately 20mm with ± 10 mm deviation, beneath water surface to form a fixed rowing track.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the game is the winner.
- 2. Contestants must use the Hand Held Generator provided by the Organizer to supply power to the robot boat. Only the contestant himself/herself operates the Hand Held Generator and nobody is permitted to assist.
- 3. Contestants are not required to stay at the start zone and can move along behind the robot canoe. The wire is long enough to connect to the Hand Held Generator. Contestants may assign one student to help lower the wire in the water. Pulling the wire of the Hand Held Generator is prohibited.
- 4. The robot canoe is placed with its poop against the end of the start zone before the game starts. The game is considered completed once the bow of the robot canoe touches the rim of the destination and the time is recorded.
- 5. Contestant cannot touch the robot canoe once it leaves the start zone. The competition is considered as incomplete if the robot canoe stops moving or fails to reach the destination within the 60 seconds game time.



18. Wireless Control Servo Motor Four-Oar Robot Boat Obstacle Avoidance Competition

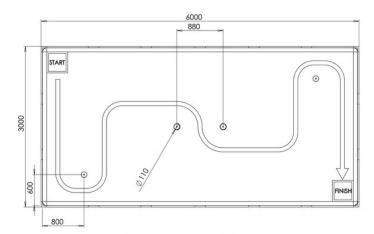

This match is to test the robot control ability of the players. Several obstacles are placed in the playing field and the contestants are required to make a four-oar robot boat bypassing all the obstacles using wireless control.

Robot Boat Specification

- 1. The robot boat operates only with two servo motors. One servo motor is to drive the four oars paddle simultaneously and the other one is to drive the upper part of the robot boat to paddle sideways to make turns. No propeller or rudder can be used.
- 2. The robot boat is controlled by wireless controller. Contestants are to prepare their own batteries.
- 3. The total volume of the robot boat (including the robot, four oars and the boat) cannot exceed 400 mm long, 400 mm wide and 240mm tall. The standard size of the robot canoe is 400 mm long, 100 mm wide. There is no weight limit. Catamaran is not allowed.

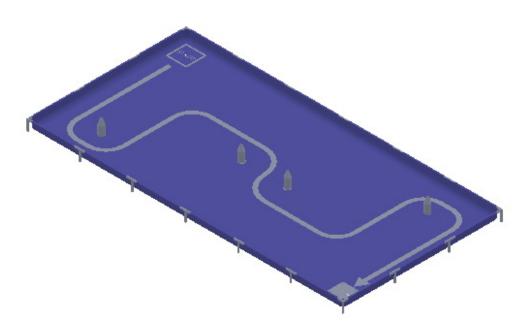
Servo motor 1: for backwards and forwards movements

Servo motor 2: for left or right turns


Sway to left

backwards and forwards movements

Sway to right

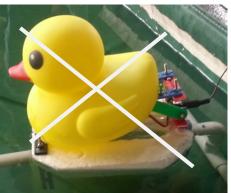

Game Field Specification

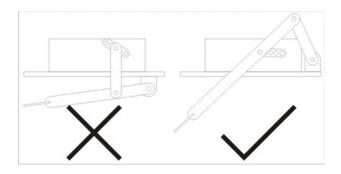
- 1. The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. The obstacle is a 1.25L soft drink plastic bottle of 110 mm in diameter.

- 1. The robot boat is placed at the "START" position. When the judge signals start of the game, the timer begins to count.
- 2. The robot boat has to follow the designated route. Players can pick up and place back the robot boat where it overturned or sunk during the course and continue to play but the timer will not pause.
- 3. Each player will be awarded 100 points before the game starts. Players cannot touch the robot boat once the game begins. 20 points will be deducted for each touching. The robot boat has to stop the game once all 100 points are deducted.
- 4. The game is considered completed once the robot boat touches the rim of the destination and the finish time is recorded.
- 5. The game time is 5 minutes. If the robot boat fails to complete the game, a 5 minutes game time is recorded as well as its completed distance.
- 6. Each team plays twice and the best time is recorded. The team with the least points deducted is the winner. If the points are the same, the team with the shortest amount of time to complete the game wins.

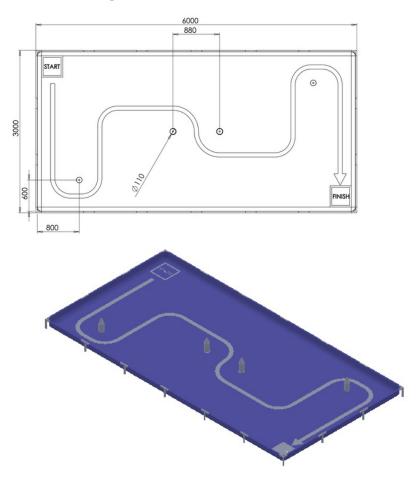


19. Wireless Control Servo Motor Robot Duck Obstacle Avoidance Competition


Ducks swim with two webbed feet in the water. Students apply simple mechanical principle and servo motors to make a robot duck that simulates ducks swimming action. In order to test the participants' robot control ability, a number of obstacles are placed in the field. Participants are to wireless control the robot duck to navigate along the designated route by passing all the obstacles.


Robot Specification

- 1. The robot duck operates only with two servo motors. The robot duck paddles with two webbed feet. No propeller can be used.
- 2. The robot duck must have a yellow plastic case and the total dimension of the robot duct cannot exceed 250 mm long, 160 mm wide and 250mm tall. No additional floating object is allowed on the plastic case. All floating objects must be completely concealed inside the yellow plastic case.
- 3. The robot duck is controlled by wireless controller. Contestants are to prepare their own batteries.

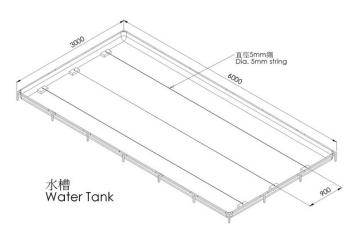

Floating material should be installed inside the body. Non duck-leg mechanical design cannot be used

Game Field Specification

- 1. The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. The obstacle is a 1.25L soft drink plastic bottle of 110 mm in diameter.

- 1. The robot duck is placed at the "START" position. Upon the judge's signal to start the game, the timer begins to count.
- 2. The robot duck is to follow the designated route. Players can pick up and place back the robot duck where it overturned or sunk during the course and continue to play but the timer will not pause.
- 3. Each player will be awarded 100 points before the game starts. Players cannot touch the robot duck once the game begins. 20 points will be deducted for each touching. The robot duck has to stop the game once all 100 points are deducted.
- 4. The game is considered completed once the robot duck touches the rim of the destination and the finish time is recorded.
- 5. The game time is 5 minutes. If the robot duck fails to complete the game, a 5 minutes game time is recorded as well as its completed distance.
- 6. Each team plays twice and the best time is recorded. The team with the least points deducted is the winner. If the points are the same, the team with the shortest amount of time to complete the game wins.

20. Robot Dragon Boat Race


Dragon boat races are one of the major activities carried out in a Chinese traditional festival called the Tuen Ng Festival, also known as Dragon Boat Festival. A team of paddlers, follow the beat of the drum, paddle together exhibiting a strong team spirit. Participants are to design and build their own robot dragon boat for the race.

Robot Specification

- 1. The robot dragon boat operates with only one set of gear box. Participants use 2 pieces 1.5V AA alkaline batteries to supply power to the robot.
- 2. The overall dimensions of the robot dragon boat cannot exceed 850mm long, 150mm wide and 180mm tall. The robot boat must have 9 paddlers on each side with a total of 18 paddles.
- 3. The appearance of the dragon boat must look like the traditional Chinese dragon boat. The body of the boat is hollow as shown in the two pictures on the right. For reference, please refer to the sketch on our website. No external supporting devices nor floating objects be installed to the robot dragon boat.
- 4. The robot dragon boat must apply the traditional Chinese dragon boat paddling method for advancement. Rowing nor canoeing method for advancement are not allowed. No propeller can be used. For reference, please refer Youtube: https://www.youtube.com/watch?v=80PK79hGmsE

- 1. The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- A 5mm diameter nylon rope is installed across the water tank approximately 20mm, with ±10mm deviation, beneath water surface to form a fixed rowing track.

- 1. Each team plays twice and the best time is recorded. The team with the shortest amount of time to complete the race is the winner.
- 2. Contestants use 2 pieces 1.5V AA alkaline batteries to supply power to the robot dragon boat.
- 3. Contestants must station at the start zone and are not allowed to move along with the robot dragon boat.
- 4. All robot dragon boats are placed with their poops against the end of the start zone before the game starts. The game is considered completed once the bow of the robot dragon boat touches the rim of the destination and the time is recorded.
- 5. The game time is of 1 minute. Contestants cannot touch their robot dragon boat that already left the start zone. The competition is considered incomplete if the robot dragon boat fails to move during the course of competition.

21. Robot Dragon Boat Relay Race

Robot dragon boat relay race is to test the team spirit and mechanical design ability of the participating students.

Robot Specification

- 1. Each team must have 4 robot dragon boats. Each robot dragon boat operates with only one set of gear box. Participants use 2 pieces 1.5V AA alkaline batteries to supply power to the robot.
- 2. The overall dimensions of the robot dragon boat cannot exceed 850mm long, 150mm wide and 180mm tall. The robot boat must have 9 paddlers on each side with a total of 18 paddles.
- 3. The appearance of the dragon boat must look like the traditional Chinese dragon boat. The body of the boat is hollow as shown in the two pictures on the right. For

reference, please refer to the sketch on our website. No external supporting devices nor floating objects be installed to the robot dragon boat.

 The robot dragon boat must apply the traditional Chinese dragon boat paddling method for advancement. Rowing nor canoeing for advancement are not allowed. No propeller can



Game Field Specification

be used.

- 1. The playing field is a water tank of 6000mm (Length) x 3000mm (Width) x 200mm (Height), filled with water to 150mm deep.
- 2. A 5mm diameter nylon rope is installed across the water tank approximately 20mm, with ±10mm deviation, beneath water surface to form a fixed rowing track.

- 1. Each team assigns 4 robot dragon boats for the race. Each team plays only once and the team with the shortest amount of time to complete the race is the winner.
- 2. Each team has 2 members station at the start zone and the destination respectively. They are not allowed to move along with the robot dragon boats.
- 3. A team member at the start zone operates the 1st robot dragon boat upon the judge commands start of the race. Another team member at the destination picks up the 1st robot upon its arrival and places the 2nd robot dragon boat to continue the race. A team member at the start zone picks up the 2nd robot dragon boat upon its arrival and places the 3rd robot dragon boat to continue the race and so forth until all 4 robot dragon boats complete the race. The total amount of game time of the team is recorded. The team with the shortest amount of time to complete the race is the winner.
- 4. The game time is of 4 minutes. Contestants cannot touch their robot dragon boat that already left the start zone. The competition is considered incomplete if the robot dragon boat fails to move during the course of competition.

22. Robot Dragon Boat Appearance Design Competition

The robot dragon boat appearance design competition encourages students to express their creativity. The loose game rules allow more esthetic and creative approach to the design of the robot dragon boat appearance.

Game Rules

- 1. The participating robot dragon boats may not take part in any other competitions.
- 2. Robot dragon boats that had taken part in the last year's Appearance Design Competition are not allowed to take part in this year's Appearance Design Competition.
- 3. The robot dragon boat including its peripheral decorations cannot exceed 850mm X 300mm X 230mm (the length, width and height dimensions may be interchanged).
- 4. The robot dragon boat is powered by 2 pieces 1.5V AA alkaline batteries and must be able to move all the paddles.
- 5. The contesting student may submit an A4 size introduction on the design concept and features (annex 1) in the specified format. However, the contents must not reflect or imply in any way the name of contestant or school. No presentation is required on the day. Failure to comply may lead to disqualification of the item.

Evaluation Criteria

Appearance / Dynamics	Creativity	Production skills	Application of material	Total
25%	30%	25%	20%	100%

Annex 1

Robot Dragon Boat Appearance Competition Product Introduction

Category: Robot Dragon Boat Appearance Competition	Secondary School Division
Contest Registration No. :	
Product Introduction:	
Design concept:	
Materials application:	
Problems encountered:	
Tropionio Gnecamerea.	
Solution:	
Ooluloii.	

Note: The content must not reflect or imply in any way the name of contestant or school. Failure to comply may lead to disqualification of the item

